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Abstract: The objective of this paper is to construct bounded solutions of a model equation, which governs two-
dimensional steady capillary-gravity waves of an ideal fluid flow with Bond number near 1/3 and Froude 
number close to one.  
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1 Introduction 
Progressive capillary-gravity waves on an irrotional 
incompressible inviscid fluid of constant density with 
surface tension in a two-dimensional channel of finite 
depth have been studied since nineteen century. 
Assume that a coordinate system moving with the 
wave at a speed is chosen so that in reference to it the 
wave motion is steady. Let H be the depth of water, g 
the acceleration of gravity, T the coefficient of 
surface tension, and ρ the constant density of the fluid. 
Then there are two nondimensional numbers which 
are important and defined as 2 ( )F c gH , the 
Froude number, and 2( )T gH  , the Bond number. 

When F is not close to 1, the linear theory of 
water waves is applicable. But when F approaches 
to 1, the solutions of linearized equations of water 
waves will grow to infinity (Peters and Stoker [12]). 
Therefore for F close to 1 nonlinear effect must be 
taken into account and thus 1F  is a critical value. 
The first study of a solitary wave on water with 
surface tension is due to Korteweg and DeVries [10] 
after whom the K-dV equation with surface tension 
effect is named. A stationary K-dV equation with 
Bond number not near 1 3  can also be formally 
derived by different approaches. However, if  is 
close to 1, the formal derivation of the stationary K-
dV equation fails. Thus 1 3  is also a critical 
value. 

It becomes apparent that the problems for F near 
1 and for near1 3 depend on each other and are 
difficult because they are not only strongly 
nonlinear, but also very delicate. Since the full 
nonlinear equations for the water waves are too 
complicated to study, it is of interest to study model 
equations. In Hunter and Vanden -Broeck’s work [8], 
a fifth order ordinary differential equation 

considered as a perturbed stationary K-dV equation 
was obtained with the assumption that 2

21F F  є , 

11 3   є and є is a small positive parameter. By 
integrating the fifth order ordinary differential 
equation once and set the con-stant of integration to 
be zero, then the model equation becomes 

2
2 1

3 12 + 0
2 45xx xxxxF                (1) 

Equation (1) has been studied extensively by 
many authors [1-8] and several types of solutions 
have been found, such as periodic solutions [1, 5, 6, 
7], solitary wave solutions [2-8], generalized solitary 
wave solutions (solitary waves with osciallatory tails 
at infinity) in the parameter region 1 0  and 2 0F   
[1,8], etc. 
 

 

2 Problem Formulation 

We add a bump ( )y b x  at the bottom of the two-
dimensional ideal fluid flow and then derive a 
forced model equation 

2
2 1

3 12 +
2 45xx xxxxF b              (2) 

We follow Zufiria [18] to construct a 
Hamiltonian associated to (2). 

When 0b , we rewrite (2) as 
2

1 2
13545 90 0

2xxxx xx F        .    (3) 

We multiply x to (3) and integrate the resulting 
equation, then equation (3) has first integral as 

2 2 2 3
2 1

1 45 4545
2 2 2x x xxx x xH F           ,   (4) 
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where H is a constant. Introducing the change of 
variables 

1 1 1

2 2

45xxx x,

xx x,

q , p

q , p

   

 

   


  
 

then (4) becomes 

  2 2
1 2 1 2 2 1 2

1, =45
2

H q q , p , p F q q  

2 3
1 2 1 2 1

45 45
2 2

p p p q   ,           (5) 

and we have 

( ) ( ) ( , )z

dz
J H z Az g z f z

dx
     ,  (6) 

where 2
1 2( , )F  R , 

1

2 4

1

2

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

q

q
z , J

p

p

   
   
     
   
   

  

R ,   (7) 

and 

1
2135

2 12

0 0 0 1 0
0 0 1 45 0

( ) =
90 0 0 0
0 1 0 0 0

A , g z
F q



   
   

    
   
   

   

. (8) 

Therefore (5) is a two degree of freedom 
Hamiltonian with two parameters 1 and 2F . Because 
different parameters 1 2( , )F in (5) give rise to 
different eigenvalues   for the linearized system of 
(6) at the origin, we divide the parameter plane

1 2( , )F into following nine cases  

Case 0 1 2( 0 0): =0,0,0,0,F   . 
Case 1 1 2( 0): = , ; , 0,F r wi r w     R . 
Case 2 1 2( 0 0): =0,0, ; 0,F wi w     . 

Case 3 2
1 2 1 2( 0 0  (45 ) 360 0): ,F , F      

1 2 1 2, ; 0wi w i w w      . 

Case 4 2
1 2 1 2( 0 0  (45 ) 360 0):,F , F      

, ; 0wi wi w      
Case 5 2

1 2 1 2( 0, (45 ) 360 0):,F F    R  
= ; , 0a bi a b     

Case 6 2
1 2 1 2( 0 0, (45 ) 360 0):,F F   >  

= , ; 0r r r     

Case 7 2
1 2 1 2( 0 0, (45 ) 360 0):,F F   >  

1 2 1 2= , ; 0r r r r      
Case 8 1 2( 0 0): =0 0 ; 0,F , , r r   > . 
We rewrite (2) as follows, 

2
1 2

345 90 45( ( )) ) ,
2xxxx xx F x f         b  (9) 

 

3 Problem Solution 
In this section, we would like to discuss the 

bounded solutions of model equation (9). 
 
 
3.1 Case 1 

In this subsection, we shall construct a bounded 
solution for equation (9) in Case 1. We construct 
this half-periodic and half-solitary-wave solution as 
follows : On interval 1( , )x  , we let b(x) = 0 and 
use Lyapunov’s Center Theorem to show that a 
periodic solution ( )P x  exists initiating at 1x x  to 
the left. On 1 2[ , ]x x , we shall use Schauder fixed 
point theorem to prove there exist a bounded 
solution ( )C x for equation (9) subject to initial 
values 1( ( ),P x 1( ),P x 1( ),P x 1( ))P x  at 1x x . 
On 2( , )x  , we also let b(x) = 0 and show that 
equation (9) with initial values at 2x x  has a 
solution ( )R x , which decay to zero exponentially 
at positive infinity by using a theorem from [6]. 
Then we combine ( ), ( )P Cx x   and ( )R x to have a 
solution of equation (9). Since the proof of existence 
of bounded solution ( )C x  and  ( )R x on 1 2[ , ]x x

and 2( , )x  are the same as in [17], in the following, 
we shall focus on the existence of ( )P x on interval 

1( , )x . First, we state Lyapunov’s Center 
Theorem : 

 

Theorem 1 Assume that a system with a non - 

degenerate integral has an equilibrium point with 

exponents ,wi 3, , m  where 0iw   is pure 

imaginary. If j iw  is never an integer for 

3, ,j  m, then there exists a one-parameter 

family of periodic orbits emanating from the 

equilibrum point. Moreover, when approaching the 

equilibrum point along the family, the periods tend 

to 2 w . 
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When b(x) = 0, equation (2) possesses a 
Hamiltonian (5) H and an equilibrium at the origin. 
In Case 1, the engenvalues of the linearized systems 
of (9) are wi and r where 1( (45w     

1 1
2 22

1 2((45 ) 360 ) ) 2) 0F   and 2
11 )45((45((  r  

0)2/)360 2
1

2
1

2  F . Thus, by Theorem, there 
exists a periodic motion of period close to 2 w in 
the nonlinear system of differential equations with 
the Hamiltonian H. Since the amplitude of the 
periodic motions are small and depends on initial 
conditions, we can write the periodic solutions in 
the form [13] 

           2( ; ) ( )Ax

Pz x e a O є є є                     (10) 
where є is a small parameter, A is the same as in 
(8), and a is a fixed nonzero vector such that   

(0; )Pz є є  a when 0є . We rewrite (10) in 
eigenvector  coordinates  as 

            2ˆˆ ( ; ) ( )x

Pz x e a є є є                    (11) 
where 

1 1ˆˆ ( ; ) ; , , ( , , , )Pz x P z x a P a diag wi wi r r      Pє ( є)

, and P is a 4 4  matrix with the column vectors  
1 2 3, , ,   and 4 corresponding to the unit 

eigenvectors of eigenvalues , ,wi wi r   and r. We 
see that â must be in the form 1 2ˆ ˆ( , ,0,0)a a  , 
otherwise (11) will not be periodic. Therefore, 
vector a 4R lies in the two dimensional 
eigenspace 1 2{ , }aS    where 2  is the conjugate  
of 1  . 

On interval 1( , )x , by Theorem and the dis- 
cussion above, there is a one-parameter family of 
periodic solutions in the form (10) with initial 
values 1( ; )Pz x є  having the properties that 

1( ; )Pz x є є  1Axe a  as 0є  and 4.aa S R  

The solution R  on ),( 2 x  can be found by 
Theorem as in [17]. As in [17], the bounded solution 

( )C x  on ),( 21 xx  is obtained by Schauder fixed 
point theorem and it is required that the initial 
values at 1x x  and the bump b both must be 
sufficiently small. Now, we write the first 
component of 1( ; ; )Pz x xє  as 1( ; ; )P x x є  to obtain 

the solution of (9) on 1( , )x . As in [17], we 

combine 1( ; ; )P x x є , );( 1xxC , 2( ; )R x T and to 
be a solution of equation (9) in Case 1, which is 

periodic on interval 1( , )x  and decays to zero 
exponentially at positive infinity on interval ),( 2 x . 

 
 

3.2 Case 3 
The idea to investgate the solutions of equation (9) 
for the parameters 1 2, F  corresponding to Case 3 is 
to combine solutions on three different intervals 

1 1 2( , ),[ , ]x x x , and 2( , )x  . On 1 2[ , ]x x , we shall 
prove there exists bounded solutions of equation (9) 
with initial values at 1x x by Schauder fixed point 
theorem. On intervals 1( , )x  and 2( , )x  , we let b(x) 
= 0 and show that equation (9) has periodic 
solutions. Then these solutions can be combined to 
become a C4 solution of equation (9). 

From section 2, we know that the eigenvalues 
of the linearized systems of equation (9) in Case 3 
are two pairs of pure imaginaries, 1w i and 2w i , with

1 2 0w w  . When 1 2w w is irrational,  Lyapunov’s 
Center Theorem can be used to construct periodic 
solutions on intervals 1( , )x  and 2( , )x  . There 
exist two one-parameter families of periodic orbits 
emanating from the fixed point 0z  . If we let 

1w w in Lyapunov’s Center Theorem, then the 
periods of this one-parameter periodic family tend 
to 12 w when the fixed point is approached along 
the family. We call this family as short-period 
family since 1 2w w . If we let 2w w in Lyapunov’s 
Center Theorem, then the periods of this one-
parameter periodic family tend to 22 w when the 
fixed point is approached along the family. We call 
this family as long-period family. 
We write the short-period family of periodic 
solutions in the form 

1 1

2( ; ) ( )Ax

w wz x e a O є є є                  (12) 
where є is a small parameter, 























045090
1000
0100
0010

12 F

A  

, and
1wa is a fixed nonzero vector such that 

1
(0; )wz є є  1wa when 0є .  

We rewrite (9) in eigenvector coordinates as 
1 1

2ˆˆ ( ; ) ( )x

w wz x e a O є є є                 (13) 

where     1 1 1

1 1ˆˆ ( ; ) ( ; ), , (w w wz x P z x a P a diag     є є  
1 1 2 2, , , )wi wi w i w i , and P is a 4 4 matrix with the 

column vectors 1 2 3, ,   , and 4 corresponding to the 
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unit eigenvectors of eigenvalues 1 1 2, , ,wi wi w i   and 
2w i respectively. We see that 1

ˆ
wa must be in the form

11 12
ˆ ˆ( , ,0,0)w wa a since the periods tend to 12 w when 

we approach the fixed point zero along the family. 
Therefore, vector

1

4
wa R lies in the two dimensional 

eigenspace  
1 1 2,wS   where 2 is the conjugate of 1 . 

Thus, on intevral 1( , )x , we have periodic solutions 
(13) in short-period family with initial values 

1 1( ; )wz x є having the properties that 1 1( ; )wz x є є  
1

2

Ax

we a as 0є and 
2 2

4
w wa S R . On intevral 2( , )x  , 

we also obtain periodic solutions (13) in  short - 
period family with initial values 2 2( ; )wz x є having the 
properties that 2

1 12( ; ) Ax

w wz x e aє є  as 0є  and 

1 1

4.w wa S R  
By the same arguments as above on periodic 

solutions of short-period family, we have periodic 
solutions 

2 2

2( ; ) ( )Ax

w wz x e a O є є є in long-period 
family on intevral 1( , )x with initial values 2 1( ; )wz x є

having the properties that 2 1( ; )wz x є є  1

2

Ax

we a  as 
0є  and 

2 2

4
w w Ra S  where 2wS   3 4{ , }   and 4  

is the conjugate of 3 . On intevral 2( , )x  , we also 
have periodic solutions 2

( ; )wz x є in long-period 
family with initial values 2 2( ; )wz x є  having the 
properties that 2

2 22( ; ) Ax

w wz x e aє є  as 0є  and 

2 2

4
w w Ra S . 

As in [17], the bounded solution ( )C x  on 
1 2[ , ]x x  is obtained by Schauder fixed point theorem 

and it is required that the initial values at x = x1 and 
the bump b both must be sufficiently small such that 
MY and Mb satisfy (98) and (100) in [17]. These 
requirements could be met by choosing a small 
bump b and sufficiently small є , say є . Now, we 
write the first component of 

1 1( ; ; )wz x xє1  or 

2 1( ; ; )wz x xє2  as 1( ; ; )L Lx x є  to be the solution of (9) on 
1( , )x . In [16], we showed that the zero solution is 

stable for Case 3, thus bounded 2( ; ; )R Rx x є on 
interval 2( , )x  can be obtained if 

),(''),('),(( 222 xxx ccc   ))(''' 2xc  is small and this 
could be done as disscussed in [17]. As in [17], we 
combine 1( ; ; ),L Lx x є  1( ; ),C x x  and 2( ; ; )R Rx x є  to 
obtain a solution of equation (9) in Case 3 with

1 2w w irrational, which is periodic on interval  
1( , )x and bounded on 1[ , ]x  . 

 
 
3.3 Case 4 

In this subsection, we would like to discuss the solutions 
of equation (9) for the parameters 1 2, F  corresponding 
to Case 4. As in previous subsections, we shall show the 
existence of solutions of equation (9) on three different 
intervals 1 1 2( , ),[ , ]x x x , and 2( , )x  . Then combine 

these solutions to become a 4C  solution of equation (9). 
First we show there exist peroidic solutions of 

equation (9) with b(x) = 0 by a theorem from Meyer 
[13]. In [13], Meyer discussed the bifurc- ation 
occurring in restricted 3-body problem. The 
Hamiltonian he concerned depends on a parameter 
  and has the properties that the eigenvalues of the 
associated linearized operator are (I) 2 2,iw iw   if

0  where 1 2 1 2, ,w w w w R , and 1 2 0w w  . 
(e.g., In Case 3) (II) ,iw iw  if 0  where 
wR and 0w  , with two two-dimensional Jordan 
blocks. (e.g., In Case 4) (III) a ib  if 0   
where ,a bR and 0ab  .(e.g., In Case 5). Meyer 
transforms the perturbed Hamiltonian to Sokol’skii’s 
normal form 

1 2 1 3( ) ( )H w a b            

2 2
1 1 3 3

1 ( 2 ) ,
2

c d e                (14) 

where 
1 2 4 1 3 2 1 2 3 3 4( ), , .i z z z z z z z z          (15) 

With higher-order terms in H are functions of 
1 2,  and 3 only. Then he proved the following 

results. 

Theorem 2 Consider a Hamiltonian of the form (14) 

with 0,  1,  0,  0.w b e     Assume 0.e   

There exist two Lyapunov families of periodic orbits 

emanating from the origin when b  is small and 

positive. These families persist when 0  as two 

distinct families of periodic orbits emanating from the 

origin. As b  becomes negative, the two families 

detach from the origin as a single family and recede 

from the origin. 

Theorem 2 can be used to show a Hamiltonian Holf 
biurcation near Case 4 since the Hamiltonian 
system (5) has the same properties as Meyer [13] 
discussed if we assume 

2
2 1

45
8

F     , 

with 1 0  and the parameter 0  . After transforming 
(5) to Sokol’skii’s normal form (14), we have 
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1
2

1 2 8

45 90 38475( ) ,    1,    ,    .
2 32

w b e
w w

 


        

Since 0e  , we have the same results as Theorem 2 

described. When 0  is small and we are in the 
region Case 3 but near Case 4, there are two 
Lyapunov periodic families emanating from the origin. 
These families persist when 0  as two distinct 
families of periodic orbits emanating from the origin. 
As 0  is small and we are in the region Case 5 but 
near Case 4, the two families detach from the origin as 
a single family and recede from the origin. 

The periodic solutions derived by Theorem 2 

with 0  which corresponds to Case 4 can be used 
as ( )L x in interval 1( , ]x . The existence of ( )C x  
on 1, 2[ ]x x can also be proved by the same arguments 
in [17]. On interval 2( , ]x  , since the zero solution 
of equation (9) with ( ) 0x b is almost stable, 
bounded  R x for large x is obtained provided that

2 2 2( ( ) ( ), ( )R C Rx x x    2 2( ), ( )C Rx x     2( ),C x

2 2( ) ( ))R Cx x   is small and this could be done as 
we disscussed in section  [17]. 

As in [17], we match ( ), ( )L Cx x  , and ( )R x at

1x x and 2x x to obtain a solution of equation (9) 
in Case 4 which is periodic on interval 1( , )x and 
bounded on 1,[ )x  for large x. 
 

 
3.4 Case 5 

In this subsection, we shall construct  bounded solutions 
of the model equation (9) for Case 5. 

Our idea is to investgate the solutions of equation (9) 
on three different intervals 1 1 2( , ),[ , ],T T T    and

2( , ),T  where T1 and T2 are positive constants and will 
be specified later. On intervals 1( , )T  and 2( , ),T   
we try to show that equation (9) with initial values at x 
= – T1 on 1( , )T  and initial values at x = T2 on

2( , )T  has bounded solutions ( )L x and ( ),R x  
respectively, which decay to zero exponentially at 
negative and positive infinity by using a theorem from [6]. 
On 1 2[ , ],T T we shall use Schauder fixed point theorem 
to prove there exist bounded solutions ( )C x  of 
equation (9) subject to initial values 1( ( ),L T   

1( ),L T  1( ),L T  1( ))L T  at 1.x T  Then we 

combine ( ),C x ( ),L x and ( )R x to obtain a 
solution of equation (9). 

3.4.1 Solutions on 1( , )T  and 2( , )T   

On interval 2( , ),T  we rewrite (9) as a system of 
first order differential equations, 

( ),dz
Az g z

dx
                (16) 

where ( ) ( ( ), ( ), ( ), ( )) ,tz x x x x x       

2 1

0 1 0 0
0 0 1 0
0 0 0 1

90 0 45 0

A

F 

 
 
 
 
 
 

 

and  

2135
2

0
0

( , ) .
0

45b( )

g x z

x

 
 
 
 
 
  

       (17) 

In the following, we shall use a theorem from [6] 
to prove that (16) with some restriction on the initial 
values at x = T2 has bounded solutions. The theorem 
is stated as follows : 

We consider the asymptotic behavior of the 

solutions of equation 

( , ),dz
Az f x z

dx
            (18) 

where A is a constant matrix and f is a continuous 

vector function defined for 0x x , | |z < c. Then the 

underlying vector space X can be uniquely 

represented as the direct sum of three suspaces 1X 
,

0X , 1X  invariant under A on which all 

characteristic roots of A have real parts respectively 

less than, equal to, greater than μ. We shall denote 

by Pi the corresponding projection of X onto

( 1,0,1).iX i    

Theorem 3 Suppose that at least one characteristic 

root of A has real part 0  and  

( , ) (| |)        ,  | | 0f x z o z for x z     (19) 

holds. 
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Then there exist positive constants k, K 

depending only on A and positive constants T, ρ 

depending also on f such that if x T  and if 

1 1 0 0,X X    satisfy 

1 0 0| | | |,     0 | |
2

k
K


      ,      (20) 

then the equation (18) has at least one solution z(x) 

for x x satisfying 

1 1 0 0( ) ,     ( )P z x P z x  

   ,      (21) 

| ( ) |  z x for x x   and 
1lim | ( ) |

x
x log z x 


 .          (22) 

For Case 5, there exists at least one eigenvalue 
with negative real part and g(x, z) in (17) satisfies 
(19) since b(x) is compact on 1 2[ , ]x x . Hence, by 
Theorem 1, there are bounded solutions ( )Rz x of 
equation (16) subject to the initial values 2( )Rz T that 
satisfy (20) and (21) with 2T T . Then we have 

( )R x , the first component of ( )Rz x , as the solution 
of (9) subject to the initial values 2( )Rz T  2( ( ),R T

2( ),R T 2( ),R T 2( ))t

R T on interval 2( , )T  . 
For interval 1( , )T  , we let ˆ x x  and put it 

in (9), then equation (9) does not change except that 
the independent variable is replaced by x̂ . Thus, by 
Theorem 3 again, there exist bounded solutions 

ˆ( )Lz x of equation (16) subject to the initial value 

1 1 1 1 1( ) ( ( ), ( ), ( ), ( ))L L L L Lz T T T T T      that satisfy 
(20) and (21) with 1T T . Hence, by substituting
ˆ x x  , we obtain ( )L x , the first component of

( )Lz x , to be the solution of (9) subject to the initial 
values 1 1( ) ( ( ),L Lz T T   1( ),L T  1( ),L T 

1( ))t

L T  on interval 1( , )T  . 

Next, we shall prove there is a bounded solution 
( )C x of (9) subject to initial value 1( ( ),L T   

1( ),L T  1( ),L T  1( ))L T  at 1x T  on 
interval 1 2[ , ]T T and the end point value, 2( ( ),C T

2( ),C T  2( ),C T 2( ))C T , which also satisfies (20) 
and (21). 

3.4.2 Solutions on 1 2[ , ]T T   

From (9) and posing initial values at 1x T  , we 
have: 

23
1 2 1245 90 45( ( ) ) ( ),   ,xxxx xx F x f x T            b

1 1( ) ,     ( ) ,xT P T Q      

1 1( ) ,   ( ) ,xx xxxT R T S      
(23) 

where

1 1 1 1( ), ( ), ( ), ( ).L L L LP T Q T R T S T              

 
To analyze the solutions of (23), we transform 

the ordinary differential equation (23) to an integral 
equation. First we solve the homogeneous equation 
of (23) : 

1 2 145 90 0,         xxxx xxY Y F Y x T      

1 1 1( ) ,  ( ) ,  ( ) ,x xxY T P Y T Q Y T R       

1( )xxxY T S                         (24) 

Next, we use ( )Y x in (24) and let S Y   to 
convert equation (23) as follows :  

1 2 145 90 ,       xxxx xxS S F S f x T      

1 1 1( ) 0,  ( ) 0,  ( ) 0,x xxS T S T S T       

1( ) 0xxxS T  .                      (25) 

Let the causal Green’s function of equation (25) be 
G(x, t), then we have  

1

( ) ( , ) ( ( ))
T

S x G x t f t dt



         (26) 

Thus we transform the differential equation (23) to 
the integral equation : 

1

( ) ( ) ( )
x

T
x Y x G x t


    

2345( ( ) ( )) ( )( )
2

t t dt Q x 
 
   
 

b    (27) 

To prove the existence of a bounded solution of 
equation (9) initiating at 1x T  on the interval 

1 2[ , ]T T , we need to show that the operator defined 
by the right-hand side of (27) has a fixed point. In 
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other words, we try to find a function̂ such that
ˆ ˆ( )( ) ( )Q x x  for all 1 2[ , ]x T T  . We take the 

domain of Q to be 

 1 2 1 2([ , ]; )  | ( ) |  [ , ] ,K C T T x M for x T T      R    (28) 

where M is some positive real number and should be 
chosen in such a way that Q maps K into itself. 

It is clear that the function ( )( )x Q x is 
conti- nuous. In order to prove that Q maps K into 
itself it remains only to analyze the size of ( )( )Q x . 
If K , then we have for all 1 2[ , ]x T T   

23| ( )( ) | ( )
2Y G xQ x M M M M M   b

    (29) 

where 

   1 2 1 2, , ,
max | ( ) |,    max | ( , ) |Y G

x T T x t T T
M Y x M G x t

   
   

and 

 1 2

2 1
,

,     sup | ( ) |x
x T T

M x x M x
 

  b b . 

If we assume that the right-hand side of (29) M , 
then we have 

3 ( )( ) 0
2 GM M M M M     

where 
1
21 (1 6 ( ))

3
G x G x Y

G x

M M M M M M
M

M M

   
 b    (30) 

and 
(1 6 ( )) 0.G x G x YM M M M M M  b      (31) 

The inequality (31) can be satisfied if we choose 
bump b and the initial values in (23) such that both 
Mb and YM are sufficiently small. Hence, if we take

[ , ]M M M  and inequality (31) is also 
satisfyied, then ( )( )Q x M  for all 1 2T x T   , 
and Q maps K into itself. 

The set K is a bounded, closed, and convex subset 
of the Banach space 1 2([ , ])C T T . To apply Schauder’s 
theorem it suffices, therefore, to show that Q is a 
compact map of K into itself. By the Arzelà-Ascoli 
Theorem and by what we have already proved, this 

amounts to showing that the set { ( ) | }Q K   is 
equicontinuous. The following simple estimate acco- 
mplishes the task. Let 1T x   , then 

| ( )( ) ( )( ) |   | ( ) ( ) |Q x Q Y x Y       

| ( ) ( ( )) |
x

G x t f t dt


   

1

| ( ( ) ( )) ( ( )) |
T

G x t G t f t dt


 


     

 | ( ) ( ) |Y x Y     

 0
sup | ( ) | | ( ) |

x

M
f G x t dt




 




    

 1

0
sup ( ) ( ) ( )) .

T

M
f G x t G t dt




 




  

 
Since the function Y and G are continuous, we conclude 
that the set { ( ) | }Q K  is equicontinuous on 

1 2[ , ]T T . An application of the Schauder Theorem tells 
us that there exists a fixed point C of Q. 

To combine ( ), ( )L Cx x  and ( )R x to be a 
solution of equation (9), it requires that the end 
point values, 2 2 2 2( ( ), ( ), ( ), ( ))C C C CT T T T      which 
will be used as the initial values of ( )Rz x on 2( , )x  , 
satisfy (20) and (21) in Theorem 3. This needs the 
right hand side of (29) to be small and this could be 
done by having ,YM Mb  and M sufficiently small. 
Observing (30), the positive number M  could be as 
small as we want by choosing sufficiently small Mb  
and YM , and thus M could be as small as required. 
Therefore, we obtain an bounded solution of (9) in 
Case 5. 

 
 
4 Conclusion 
We construct bounded solutions of a model equation, 
which governs two-dimensional steady capillary-
gravity waves of an ideal fluid flow with Bond 
number near 1/3 and Froude number close to one. 
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